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Foreword

The following material has been prepared as part of a

forthcoming book, Electron Scattering from Complex Nuclei, to

be published by Academic Press, Inc., hopefully in 1970. The

chapter on radiative corrections forms a self-contained entity,

which might be of interest to experimental physicists working

in the field of elastic or inelastic electron scattering, and

for whom radiative corrections represent a matter of practical

importance. For this reason, a separate publication of this

single chapter as a Naval Research Laboratory Report apart

from the book itself, and before its eventual publication,

seemed to be warranted.

Occasionally, there appear references to equations con-

tained in earlier chapters of the manuscript of the book. In

the present report, these equations are collected in an

Appendix.

We use this opportunity for requesting readers of this

report to communicate to us any errors or need for clarifica-

tions they might discover, so that corresponding corrections

may be made in the manuscript of the book before its publica-

tion.
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Abstract

In this report, we give a review of the present status of

radiative corrections to electron scattering from complex

nuclei, both from the theoretical standpoint and with a view

to practical applications. The first section presents a

description of the general features of radiative corrections.

The following four sections discuss the individual processes

entering into radiative and line shape corrections and their

synthesis,while the rest of the report is concerned with

individual processes contributing to the radiation tail, and

their synthesis (or "unfolding procedure").

Problem Status

This is an interim report on a continuing problem.

Authorization

NRL Problem: Hol-09

Project: RR 002-36-41-5005

Manuscript submitted: February 24, 1970.



RADIATIVE CORRECTIONS TO ELECTRON
SCATTERING FROM COMPLEX NUCLEI

7.2.1. GENERAL FEATURES OF RADIATIVE CORRECTIONS

The only major drawback in the use of the electron as a

probe of nuclear structure is the fact that due to its small

mass, it may be very easily deflected, and most of such deflections

are accompanied by radiation. These radiation effects and re-

lated ionization effects, necessitate important corrections in

the analysis of electron scattering experiments. They may be

grouped into the following categories: (1) radiation effects

during the scattering by the nucleus, (2) radiation and electronic

collisions before or after scattering, and (3) straggling due to

ionization effects. These shall now be discussed individually.

(1) Radiation effects during scattering. While the electron

scatters off a given nucleus, it will at the same time interact

with the radiation field emitting real and virtual photons, and

the existence of these processes will modify the scattering

cross section. The corresponding corrections might be referred

to as "t-effects" since they are, just as the counting rate from

the scattering process itself, proportional to the target thick-

ness t. Two corrections appear:

(a) The Schwinger correction (Schwinger 49, 49b) which ariE

from the emission and reabsorption of virtual photons by the

3es

electron, and from the emission of

Its effect consists essentially in

scattering cross section dco/dft

soft, unobserved real photons.

the multiplication of the

by a correction factor

1
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- 4) with Y>°, so that

(bs/vl a ) b (3 Z sea /o/Q ( -) (7 .1)

One may thus either calculate the elastic cross section 1(-C /j (

theoretically using a model, multiply by ( I - JS) and compare

with the measured elastic peak, (0//'/i ) ; or one may divide

the measured peak (o/c/ 2 )b by (I - and use the resulting

increased peak size for a comparison with the theoretical cross

section da/J2 . Since the measured elastic peak has a tail

toward the low-energy side, see Fig. 7.4, a cut-off at some

energy AE , typically 1-2% below the peak energy, has to be

made whose magnitude enters in the radiative correction. The

correction J is often fairly large, of the order of 20-30%.

The correction procedure for electrons other than in the

elastic peak is more involved, see below.

(b) The radiative tail (Racah 34, Schiff 52, McCormick 56)

which consists of electrons that have emitted a hard photon

during the scattering process, and whose energy has thus been

degraded below the cutoff AF of the elastic peak. The form

of the spectrum plotted vs. 52 of these radiation-degraded

electrons is typically as indicated in Fig. 7.4, showing first

a decreasing tail extending below the elastic peak, which for

very low electron energies rises up again (this will be under-

stood later on). It is interesting to note for .~> = 1800

scattering by a spinless nucleus that although the elastic peak



3

is here practically absent for all energies It » Arc , it still

gives rise to a radiation tail which now is monotonically in-

creasing as the energy of the scattered electron L decreases.

A theoretical expression for the radiation tail is obtained

essentially by integrating the Bethe-Heitler formula (Bethe 34,

Heitler 54), or its generalization, for the emission of one

bremsstrahlung photon over the directions of the unobserved

photon.

Fig. 7.4 shows examples of inelastic peaks sitting on top

of the radiation tail of the elastic peak; their area can be

known only if the tail is subtracted accurately. As a matter

of fact,each inelastic peak has its own (generally short)

radiation tail, as illustrated in Fig. 7.5 for the scattering

of 70 MeV electrons from Y at -9 = 130 (Peterson 68). The

area of a higher-energy excited level is determined by sub-

tracting from the measured peak the radiation tail of the

elastic peak and of all lower-lying excited levels (excitation

energy increasing to the left of the figure).

(2) Radiation and electronic collisions before and after

scattering.

(a) Radiation. The observed electron scattering may take

place at one given nucleus, while emission of radiation may.

occur when the electron passes a different nucleus, either

before or after the scattering. (One often neglects as small

to second order those events where the electron emits radiation
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successively in the field of several nuclei, including the

scattering nucleus, since typical target thicknesses are 0.1

radiation length or less. In other words, the various correc-

tions may then be applied additively.). The corresponding

2
corrections might be referred to as "t -effects" since they

depend on the target thickness to higher order than linearly,

in general as the second power or higher (Nguyen Ngoc 65). The

consequence of this radiation effect is just to add another

contribution to the radiative tail mentioned above, as it also

leads to a degradation of the scattered electron in energy. But

it also leads to a broadening of the elastic and inelastic peaks.

2
(b) Electronic collisions. Another t -effect is the loss

of energy of the electron (before or after scattering) by a

collision with an atomic electron. Theoretically, this may be

calculated using the formula of Moller (32) for electron-electron

scattering, and the effect simply adds to the radiation tail.

By performing experiments with different target thicknesses

the t and t effects may be separated (Bounin 61), but this pro-

cedure is too lengthy for general use, and one resorts to cal-

culations which are based on the Bethe-Heitler formula for (2a),

and the Moller formula for (2b).

(3) Straggling due to ionization effects. The atomic ioniza-

tions which the electron, like any charged particle, gives rise

to when traversing a target of finite thickness, lead to a large

number of very small individual energy losses which are statis-
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tically independent. The total energy loss is thus subject to

statistical fluctuations which cause a broadening in energy of

any originally monochromatic beam passing through the target,

Gaussian in shape but with a tail toward the low-energy end.

This phenomenon may be analyzed using the theories of Landau (44),

or of Blunk and Leisegang (Blunk 50), and it leads to a broaden-

ing of the observed peaks in addition to the instrumental broad-

ening which is present due to any original non-monochromaticity

of the incident beam, or to finite energy resolutions of the

counters. Another broadening is caused by the effect (2a) men-

tioned above ("radiation straggling").

The effects discussed above give rise to two different

types of corrections of the experimental spectrum of scattered

electrons before it can be theoretically interpreted (Nguyen

Ngoc 65):

(A) Line shape correction. A given observed peak(with exper-

imental cutoff lE7) does not directly represent the entire cor-

responding cross section since the cross section is modified, and

since some ot the electrons scattered at this energy are subse-

quently degraded in energy (and hence are not counted in the peak)

by effects (1) - (3). The correction thus increases the experi-

mental intensity (d6 /df) L s , cf. (la).
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(B) Radiative tail correction. For inelastically scattered

electrons, corresponding e.g. to a peak at energy E2 _ X I , a

spurious background is added to the observed intensity by the

radiation tail of the lower excited levels or of the elastic

peak, as shown above. This background must be calculated and

subtracted from the peak; the corresponding subtraction is in

general larger than the increase in intensity for the given peak

provided by correction (A),so that a net decrease results. This

is illustrated in Fig. 7.6 for scattering of 70 MeV electrons

from 0 (contained in H2 0) at -e = 1800 (Goldemberg 66). An

elastic peak is present from 0 (X=-0) due to the finite accep-

tance angle of the spectrometer, and from 1H (displaced by

recoil) due to its spin T = 2 The ( 0 ground state) radiation

tail is indicated as a dashed line, and the corrections to the

data (triangles) increase the elastic peaks corresponding to (A),

while the inelastic peaks are decreased due to the combined effect

of (A) and (B).

We shall now discuss the individual corrections quanti-

tatively.
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7.2.2. THE SCHWINGER CORRECTION

The question of the radiative corrections to electron scatt-

ering caused by virtual photons has received considerable theore-

tical attention since it is closely connected to a basic problem

of quantum electrodynamics, namely the so-called "infrared catas-

trophy." This has to do with a divergence of the electrodynamic

corrections to scattering processes which contain a term propor-

tional to an integral over the energy k of the virtual photons,

lk /Ik,
f (7-2a)

g being an upper limit above which the correction becomes

negligible (Lomo.n 56). This integral diverges at the lower

limit. A finite value is obtained if the photons are cut off

at a small lower limit of their energy km w . Alternately, in a

covariant treatment, one may assign the photon a small rest mass

A , but one obtains a similar divergence in the limit A -> o.
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All this can be described by perturbation theory in quantum

electrodynamics, so that for the case of electron scattering,

contributions of the diagrams shown in Fig. 7.7 must be evaluated.

Diagram (a) alone leads to the Mott cross section, Eq. (2-70a),

of order ( ZE 2 )2 The interference terms between diagram (a)

and diagrams (a') to (d') furnish the corrections of order (i)2.

Diagrams (a') to (c') describe the emission and reabsorption of

virtual photons; of these, the electron self energy diagrams (a')

and (b') lead to a mass and electron wave function renormalization

(see, e.g., Jauch 55, Bjorken 65). Diagram (c') is called the

vertex renormalization diagram; it cancels out the wave function

renormalization of (a') and (b') by Ward's identity (Ward 50).

Diagram (d') is the "vacuum polarization" (photon self energy)

diagram which modifies the photon propagator, partly renormalizing

the electron charge.

After carrying out the standard renormalization procedure

using a small photon mass A , both the self energy diagrams (a'),

(b') and the vertex part (c') exhibit the mentioned infrared di-

vergence (Karplus 50). This does not mean, however, that quantum

electrodynamics fails when it comes to calculating radiative

corrections. Schwinger (49b) has shown that if this theory is

used to describe the electron scattering experiments as they are

carried out in practice, the divergence will not arise. In any

such experiment, the elastic scattering process will be indistin-

guishable from a process in which a soft real photon (of energy
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1< AL ) is emitted during scattering: the finite energy

resolution (of width \F ) present in all the counters will

cause the two types of scattering events to be lumped together.

One therefore has to include in the cross section (and radiative

correction) calculation the diagrams (a) and (b) of Fig. 7.8 in

which one soft real bremsstrahlung photon is emitted by the

*

electron. The cross section corresponding to bremsstrahlung

emission, of order ( Z e 3 )2 just as the radiative corrections,

must be added incoherently to the scattering cross section obtained

from all the diagrams of Fig. 7.7. It turns out that when inte-

grating over the energies of the unobserved photons in the brem-

sstrahlung cross section, the same divergent integral

AE

0 (7-2b)

is obtained, which exactly cancels that of Eq. (7.2a) to leave us

with a finite correction containing the integral

Diagrams (a') and (b') in Fig. 7.8 are less importantleading to

a contribution to the corrections of relative order /M

M = nuclear mass (Drell 52). For the important case of electron-

proton scattering, they were taken into account together with the

diagrams, analogous to those in Fig. 7.7, where virtual photons are

attached to the proton line. The corresponding radiative corrections

to electron-proton scattering (Tsai 61, Mbister 63) have been reviewed

by Mo and Tsai (Mo 69). For a calculation of electron-proton brem-

sstrahlung (Berg 58, 61; Isaev 59, 60), all four diagrams of Fig.
7.8 were used.
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E

f
AE (7-2c)

This was first noticed by Braunbek and Weinmann (Braunbek 38)

and by Bethe and Oppenheimer (Bethe 46).

The divergent integral of Eq. (7-2b) describing the emission

of a single bremsstrahlung photon represents the original "infra-

red catastrophy", seemingly predicting an infinite total cross

section of bremsstrahlung emission. Bloch and Nordsieck have

shown, however (Bloch 37; see also Pauli 38) that for soft photons

the first-order perturbation theory used in the derivation becomes

inadequate; they were able to extend (in the soft-photon limit)

perturbation theory to all orders, i.e. to any number of emitted

photons, with the result that the infrared divergence disappears

from the cross section, and that the probability for emission of

a finite number of soft photons (including no photon!) in the

scattering process is exactly zero, so that every such process is

necessarily accompanied by an infinite number of soft photons

(though of finite total energy).

This shows that there is no such thing as purely elastic

scattering. Photons have no mass and are thus very easily

shaken off. Alternately viewed, the Coulomb field accompanying

a fast electron is transverse due to Lorentz contraction; when

the electron changes direction during scattering, this field must

readjust to the new direction, and the difference between the old

.. 



and the new field appears as radiation. Go

We thus see that for soft photons, all orders of pertur- ^2C

bation must be taken into account. The same is true in the

radiative corrections due to virtual photon, and Jauch and

Rohrlich (Jauch 54; see also Kinoshita 50, Baumann 53) were able

to show, using the methods of Bloch and Nordsieck, that the

infrared divergences cancel out to all orders between the real

and the virtual processes.

In the following, we shall sketch this cancellation in

first order, and then quote the complete result for the radiative

correction J including emission of soft photons k 4 AE

The lowest-order 8 -matrix is

Pgr = 2xe O ff h±At x, (7-3a)
where we used the symbol .O for the bare (unrenormalized)

charge of the electron; the interaction Hamiltonian

follows e.g. from Eq. (2-25b). We assume a static Coulomb potential

As (x) = At = t Scow Ze/r ~(7-3b)
with Fourier transform

A A ) =2i ;( 4 (4724/-z )2rzi(E)+ (P ) (7-3c)

using the four-momentum transfer A = tE) . The 8 -matrix,

from Eq. (7-3a), becomes
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t (h±,4) = -64(k)Y t(knAr (A)

- . f0 ai .A (a) \ (7-3d)
with given by Eq. (4-2d). If now the renormalization is

carried out (see, e.g., Jauch 55), the vertex _G, Ago including

its radiative corrections given by the diagrams of Fig. 7.7,

becomes

xog e ( /AFE AS)+ (K,/1-2mS)'E v Fr, (W) 
(7-3e)

with the renormalized electron charge -e = . It is recog-

nized that the radiative corrections have introduced an electric

form factor i- (hi) ,and have added an anomalous magnetic moment

of the electron with form factor T7 (at) of Eq. (3-37b). If

we write

F (A2 ) = ' (A) - A t YU2
(7-4a)

the contribution due to the vacuum polarization is obtained as

-o 2 TU (AZ) = (22/rr) Jx(-x)-nLt (a/4)X(/T-x)] dtn
0 (7-4b)

with the limits

A 4 te u _ Amp (Al) -- (cl,/15r)(/.) 7-c

A2.j 2 -A l ( -2 e (o/37r)Jff (-/6n4).(7-4d)



13

The magnetic form factor, provided by diagram c' of Fig. 7.7,

is given by

M A1, 112.- - (I -x) (7-4e)

In the limit Arc ,me , it goes over into

M A)>1> A (7-4f)

i.e. into the static anomalous magnetic moment of the electron

as first derived by Schwinger (48, 49b). The infrared divergence

appears in the electric form factor: using the modified photon

propagator of Eqs. (3-37c, d), one finds

FE' (add = 1 2jr j dx jdy { a pa ± XL (A4)(I x) jv2-( -xtI )(1-a)-
x~~~~~~~~____._X _____A_______)_(1 - x)

(7-4g)

with the limit

A /E 1 FE(2 )1~° SOe _3)F 2)~~~Iffi A (7-4h)

this illustrates the divergence for A O , which also appears

in the cross section for Coulomb scattering. The latter is given by

11 El -2 3 (7-5a)
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which, with Eqs. (7-3a, c), agrees with the previous expression

Eq. (2-60a), and can be calculated using 5 (>. of Eq.

(7-3d), with the renormalization given in Eq. (7-3e). In the

limit 2/-t<j> I or /3 4' 1 which we here consider for pur-

poses of illustration, the cross section is found as the Mott

(or Rutherford) cross section modified by a factor ,

F1r A_ m
SX = do L 1 - 3 z m; ta A s 8 i (7-5b)

if also the contribution of Ad is disregarded; JO /in is

given in Eq. (2-70d). Retaining the Ad contribution will just

remove the term 3/8.

As mentioned above, the cross section due to soft bremsstrah-

lung, i.e. diagrams (a) and (b) of Fig. 7.8, has to be added in

order to cancel the logarithmic divergence L (me /A) as A -eO 0

For the emission of a photon with momentum k and polarization

four-vector 6 , one has the interaction amplitude, using stan-

dard techniques:

k -

I~~~~~~~~~~~~~~+ 1t7_ i< /t (k.L A
It ($l->) vgv~ mt > >j Ynt ( 1) 4 ¢ ( )(7-6a)

Here, (c j + A")/Z if the photon mass A is introduced

again; the momentum transfer is k= - - 1 . Rationali-

zing denominators and using Eqs. (2-33c, d) and (2-20c), we may

rewrite
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C~~~~~~~~L (C ) J1/2-( ) k Ki

fFAWA kv ]~~ (~I ( 7-6b)

For present purposes where only soft photons are considered,

we shall just retain the first term in square brackets, which

diverges as li 0, and which gives the infrared catastrophy,

neglecting the two other (finite) terms compared to the first.

One then has the covariant, gauge invariant expression

5 (41 4 z ) -¢ -, ) k--2 k, )S At ( (7-6c)

The cross section is given by

01 C_ = (2r)3 (2r)(7-6d)

Since the electron spin dependence of Eq. (7-6c) is the same as

that of Eqs. (7-3d, e) (neglecting Ago ), and as we may also

assume L ^ k2 - k for soft photons, we have as in Eq. (7-5b):

C__B -15 aS cX d2 ( k.2.- A)_ <.,§) \Z'

-JL ,-z 77 -t 4 n X A J a kjJ-L L/ )o . k(7-6e)7-T k~~~~k
JOXJiRis given by Eq. (2-70a). Carrying out the angular

integration and the summation over the photon polarizations 1

and considering elastic scattering with emission of soft photons

only, D a kL , we obtain in the previous limit

( -k 3 ) k d4 (7-6f)

This must now be integrated over photon energies up. to the exper-

imental energy resolution IA £E . The result is
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dcgT CAR 22 I\ 2.E 5
(Q dX ( ltb ) (7-6g)

Adding 0lbj /dfl to the radiation-corrected cross section of Eq.

(7-5b), including the Ad contribution, one gets the total observed

cross section from which A has disappeared-

d656E) =_ 5R 2

Act dfl3 2 f 2e 2F 5 (7-6h)

Thus, the corrected cross section may be written

016(6 E)___
dQl da I ( s ) 1 (7-7a)

with the Schwinger correction

_s ____ 37 K ( i' J K& T (7-7b)
3w -/ -ncl 3 0/

(for elastic scattering). In the general case of elastic scat-

tering from a point Coulomb potential, to lowest order in the inter-

actions, one has the cross section for an electron of initial energy

E. and final energy E, with El -A E <. UC. (A-

1(AE) dd1 (7-8a)

Schwinger's (49) derivation of contained errors, which were

shown by Elton (52) to cancel, however. Detailed derivations of

as are given by Akhiezer (65), or by Kallen (58). The complete

expression for X is also quoted in the review paper by Motz (64),

with corrections given by Maximon (69); it is expressed in terms
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of the Euler dilogarithm (or Spence function

L2 (x) = (7-8b)

In the case of high electron energies, E1 ,> -n , which is of

interest here, the Schwinger correction becomes2o~~~~ ~1
2+[67T&- L, (Co5 2 Ci. -qj '

(7-8c)

For its separation into infrared, vacuum polarization, and vertex

parts, see Mo (69). This correction, for typical energies

EU - 100 MeV, AE = 0.5 MeV and angles a = 6° is fairly large,

-'-- 20%.

The results given here refer to elastic scattering from a

point Coulomb charge treated in first Born approximation only

(and the radiative correction given in lowest order), neglecting

recoil. Many applications however require a broader region of

validity. The necessary extensions have recently been discussed

by Maximon (69). They are:

(1) Schwinger correction for inelastic scattering. If a

nuclear level of energy oi is excited in the scattering, ,

This is a monotonically increasing function of X for 0 is ! I

with L2(0) = 0, L 2(1) = 7 /6.
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becomes (Meister 64, Maximon 67, 69) with =E

_=_X (EVE _ 13 l ,_ _ l 17 1 E
T Or Iz lMA 32, La E,

+ [ Gr LL(cost 1 ) 4 ee 7
(7-8d)

This may be used for the line shape correction of inelastic

peaks.

(2) Effect of extended charges, and of extended magnetic

moments. For the elastic case, it was shown (Elton 55) that

remains uninfluenced by a spatial extension of the nuclear charge,

so that CO / r in Eq. (7-8a) just gets multiplied by the

nuclear form factor. For inelastic scattering, similar remarks ap-

ply, except that the rapid variation of inelastic form factors

may require precautions (Maximon 69). One may also use the same

for magnetic scattering, see Sec. 6.1. This, however, is

correct only for X if (Maximon 69).

(3) Exponentiation. Under certain circumstances, we may have

to take into account higher-order radiative corrections when

calculating . Schwinger (49b) noticed that ; may exceed unity

for small AE , necessitating a modification of Eq. (7-8a). He

thus suggested replacing the factor (1 - A ) by exp ( - t ),

as then (5 (AE)/dQ would vanish for the case of \EL- O (AYQoo),

i.e. no pure scattering without accompanying photon would exist,

in agreement with Bloch and Nordsieck's result (Bloch 37).
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Higher-order radiative corrections were calculated by Jauch (54),

Lomon (56), Yennie and Suura (Yennie 57a), Eriksson (61), Yennie,

Frautschi, and Suura (Yennie 61) and Perrin and Lomon (Perrin

65). It is shown in these works that for elastic scattering

the dominant soft-photon part of 9g , which contains the reso-

lution LE 

O(AE) = (2o/T)[t (j2/>e)~fj< (E71 /AE), (7-8e)

indeed has to be exponentiated; but it is not known at present

whether the same should be done with the remainder,

- 6- E (AU)

- X i 3 A ]±- 17 + 21 [a ic2_ Lz (cosl+ 7)} L.
(7-8f)

It is therefore suggested (Maximon 69) to correct the cross sec-

tion by

A5-(-A-) do-d -T(F

(7-9a)

but it may be just as accurate to use

c (AE) _ d_,-
dfL JZI (7-9b)

*

Strictly speaking, the true soft-photon contribution has the

logarithmic term CYL< (n/AE) in place of A (E1/tE)
cf. Maximon (69).
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(4) Exact scattering cross section. So far, all considera-

tion of radiative corrections were made treating the electron-

nucleus interaction in first Born approximation only.Mitter

and Urban (Mitter 54), Newton (55, 55a) and Chretien (65) con-

sidered the electron-nucleus interaction in second order (and

the radiation correction in lowest order); Mittleman (54) treated

the potential in all orders for nonrelativistic electrons. Suura

(55), however, was able to show for the Coulomb potential that

the main term in the radiative correction due to one soft photon,

(7-10)

remained the same in all orders of the Born approximation for

the electron-nucleus interaction. Since this provides most of

the correction, it is suggested (Maximon 69) to rewrite Eqs. (7-9)

in the form

,a-FL 2 ( SQ )tk tL (1 )(7-lla)

or alternately

(7-llb)

where (dc/J )v is the theoretical cross section calculated

exactly (e.g. by phase shift analysis), and to consider Eqs.

(7-lla, b) a sufficiently accurate prescription for carrying

out the radiative corrections.

(5) Recoil corrections. None of the preceding has taken
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into account the recoil of the nucleus. The corresponding cor-

rections fall into two groups: (a) kinematic effects given e.g.

by the recoil factor of Eq. (2-13b), and (b) dynamic effects

which may appear in the radiative corrections through the dia-

grams (a'), (b') of Fig. 7.8; cf. the footnote before Eq. (7-2b).

One kinematic effect to be considered is the fact that due

to the nuclear recoil, electrons observed in the energy bin 6E

no longer correspond to photon energies S L t : the photon

energy now depends on the direction of its emission, and the

limit of integration of the real-photon radiative correction

must be modified accordingly.

The kinematic and dynamic corrections to electron scattering

from a proton (of charge -Le ) were calculated by Tsai (61),

and by Meister and Yennie (Meister 63), and are reviewed and

discussed in the paper by Mo and Tsai (Mo 69). Radiative correc-

tions to electron-induced processes in which the final electron

is not observed, were calculated by Kuo and Yennie (Kuo 66),

and were found smaller than for comparable processes with a final

electron detected.

7.2.3. THICK-TARGET BREMSSTRAHLUNG

Radiation straggling, which causes a broadening of the

observed peaks, comes about by statistical fluctuations of

small-energy bremsstrahlung losses in multiple collisions while

the electron traverses a target of finite thickness. The probabi-
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lity that an electron of

through a thickness t of

and E&- dE by radiation

initial energy E , after passing

matter, loses an energy between e

is given by (Rossi 52)

/ ~~t -I

Prd (E,, by t )E F(/x 0jA2)( E-f / E (7-12a)

where X. is the radiation length. For E de ED , this may be

written

+L-- I
:i d (EE2+)cL) EF(t 0 Z) ( )

If one defines a bremsstrahlung correction factor due

losses up to AU by

- _B = A 'd (,£ A)£

one finds using F(X) (*1/X as X d- ii:ir- xeoAz2 aU a Fe
This is recognized as a t -effect.

(7-12b)

to all

(7-12c)

(7-12d)

7.2.4. LANDAU STRAGGLING

Another I -effect which causes a broadening of the peaks'

is the ionization straggling, in which the multiple small energy

losses come from atomic ionization. Landau (44) has performed

an analysis of this effect, with the result: the probability

Mo and Tsai (Mo 69) have given a more accurate expression for

Prad (5El , t ).



23

that an electron of initial energy E , after passing through a

thickness t of matter, loses an energy between E and E +4iE

by ionization is given by the Laplace transform

A-t -5O

P. (E, , ) d (d E/2vrL )jisds-'C pi:(E ,+)
~~~~ on ~~~~~~~~~~(7-13a)

(5> O ), where

?on (E I~ S)Lc C~
(7-13b)

Here, C = 0.577... is the Euler-Mascheroni constant, E/ is defined

by

2mj3'c (7-13c)

the atomic ionization potential is I 13. i C V , and

S m4Zf ' y t 0, 0154 t (7-13d)3 
1- C /3 A ZA

where Nz= Avagadro's number, § = density of matter, 9- and A

the atomic numbers and weights of the atoms in the molecule.

This probability may be given in the form

PtOY E )) (7-14a)

in terms of a universal function n ('t) of the variable

A / (7-14b)

where
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Ad, -$ [L (§ /£;') t L - C I (7-14c)

The function (A) is given graphically in Landau's paper. It

has an asymmetric peak around 4 = -0.05, so that the most

**

probable energy loss is

£ =t 00 t /')+ 0.3/ j

=~~ ~ Io IF13u 6), - -, I - (7-14d)

The integrated energy loss

0 ) JE (7-15a)
E

where (A5 - o) , may be obtained from Landau's

graph of the universal function }K (A) . For A 410 it

can be fitted (Nguyen Ngoc 65) by

w~~~I ( -0.380 + 0. 46LI; + 0,0(2qt 
(7-15c)

*

in such a way that a large energy loss may occur with significant

probability. A tabulation is given by Borsch-Supan (61) which

leads to a slightly different

**

See also Sternheimer (52).
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and for large arguments, approximate expressions are

XY( ) -= 1 /S DC
(7-15d)

(7-15e)

Here X (A) determines bi through the equation

59 (A) t -g~cU () _ i t 1 - t )(7-15f)

which may be solved approximately by (Borsch-Supan 61)

p>) X (I- 4 N) (7-15g)

The correction factor due to all ionization losses up to AE is

then approximately

~~~~J Ti,, (EU a A)cLE C(N,) i _ .7 1

(7-15h)

An earlier version of the theory of ionization straggling is

due to Williams (29). Corrections to the Landau theory, taking

into account resonance excitationswere given by Blunk and

Leisegang (Blunk 50, 55);see also Breuer (65).

7.2.5. LINE SHAPE CORRECTION

The preceding information allows us to perform the radiative

correction (A) of Sec. 7.2.1, i.e. either correcting the inten-

sity of the line, or obtaining the shape of the line caused by
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the radiative ( t ) and straggling ( AL ) corrections.

If only the intensity correction is desired, one may in

first approximation simply multiply the calculated cross section

Jk3/da by the three correction factors listed above (Nguyen

Ngoc 64),

(~L 'tv a I. -l (7-16)

What is the effective incident energy U to be used both

in the calculated cross section and in the correction factors?

Statistically, the scattering takes place in the center of the

target, so that the most probable straggling loss is ½ e

(the most probable radiation straggling loss being zero),

typically of the order of 100 keV. If U is the energy

of the electron beam as it is delivered by the accelerator, one

has

eDE S 2-
(7-17a)

After the electrons of energy scatter from a nucleus,

the latter acquires a recoil energy T given by Eq. (2-12c),

and possibly an excitation 'energy C'- . A further ionization

loss occurs when the electrons traverse the remainder of the

target, so that the energy of the observed peak Ek in the

scattered electron spectrum is given by

Erz = Eeff -T1 'Z -7-7b
(7-17b)



27

In modern accelerators with good energy resolution, it will

be necessary to obtain the complete line shape of the peaks as

caused by the above described effects; in this case, the

Schwinger, radiation, and Landau straggling effects must be

folded into each other. If we consider the elastic peak (a - ),

say, and keep within its vicinity, so that E is neglected

in Eqs. (7-17), we may use a common energy E = F -

~~~ t_ ,. (for a heavy nucleus, T is negligible also) for

calculating the corrections. The folding is simplified by using

the Laplace transforms (Bergstrom 67),

earl s)= WPP(El,)-Ed
(7-18a)

where X (Eo , > ) is the folded probability distribution

(i.e. the desired line shape) corresponding to incident energy

E ]and energy loss E so that - . We have

from the folding theorem

J ) P) I (El (7-18b)

where it (¾) is the target thickness ahead (behind) the

scattering nucleus, and

9;r (ln-vm) = t(< (ELR,-t) ~s i(t--15nt) (7-18c)

Here, u (LI S, L ) is the Laplace transform analogous to

Eq. (7-13a). For the Schwinger correction, one differentiates
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Eq. (7-lla) with respect to A2\Eand takes the Laplace trans-

form to obtain

pa (E , s ~ ( ~ S)z) {§ )E1S)ti: E1)/ Q ) (7-18d)

with

//=(2oa/)Lr (t'/YL IC,- 1. .
(7-18e)

A frequently used target arrangement is the so-called

"transmission geometry" shown in Fig. 7.9, where the target is

at a half-way angle between incident and scattered beam. This

leads to

-1-t a = c ,nSL
+ ~~ _ CO"S i,

(7-18f)

no matter at which point inside the target the scattering took

place. In this case, Eq. (7-18b) integrates easily, and one

finds

(-K.W&p tTJs -s~P.L-C_-- C(SE')j],
(7-18g)

where

T= +3"t ±/A.2
(7-18h)

being measured in radiation lengths), and

T ( ;); o (2)tE1 O6-(F1/ A. (7-18i)
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One may now perform the inverse Laplace transformation and

close the contour as shown in Fig. 7.10. This leads to the

line shape function (Bergstrom 67)

(E ) =K XI1(1T- T)
(7-19a)

with defined in Eq. (7-14b), given by Eq. (7-13d), and

'C 'I- -~ e

(7-19b)

where 1 , (Aio) ( of Eq. (7-14a). The Schwinger and

radiation straggling effects enter into I(' i ) only through the

combination T, in agreement with Bjorken's (63) conclusion.

The observed cross section is then given by

(c 5(£1) ) = S,) ray ( )

\ d ie dQ Ad g1T (7-19c)

which is the most general (differentiated) version of Eq. (7-l1b).

For describing inelastic peaks, the same expression may be used

if the excitation energy is small, and the natural level width

is much less than the Landau straggling width. Usually, T<0.1,

so that one may approximate (Bergstrom 67):

(a) if 10,

I (X,7W ) f (x)[li (ti-AT] + T >Lg± (I) -1 T (I+A)z (
(7-19d)

with C (A) and (A)the same as in Sec. 7.2.4;

(b) if X Z 10, O >)T) -(1 )- () 7+ -2(7-19e)
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with Co determined by Eq. (7-15f). The first term in Eq.

(7-19e) comes from Landau straggling, the rest from radiation

effects, which latter thus dominate that part of the tail in the

line shape where C T > 1.

Integrating Eq. (7-19c) over the line shape from E =

to E= A E gives, using Eq. (7-19e):

dc7(El)/ ~[d6 S C El i)/n (7-20a)

with

C-y (1-Y') ("(~' )_ [ 
T-F (T) E1 (-T) (7-20b)

Since 7i( Z) - I, T7T) 1 , and for w ai

c~) = 2A Ž F /
(7-20c)

we obtain in this case (i.e. for A ' again our previous

Eq. (7-16), using AE '5 =\TE - E , i.e. measuring the

cut-off energy from the maximum of the peak.

Fig. 7.11 shows the ratio

dQ Se Ae dfL (7-20d)

of Eq. (7-19c), obtained numerically and plotted vs. E , for

20 8Pb at E1= 400 MeV, - = 900 and for a target thickness

2
= 30 mg/cm . The T=O curve shows the effect of Landau

straggling only, the T = 1.04 x 10 curve the effect of Landau

plus radiation straggling, and the T = 7.09 x 10 curve the
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effect of all three corrections. The X indicates the

wT,= I position. If the scattering angle 9 is increased,

the line broadens according to

C r 0 (I t .20 GT),
(7-20e)

where F0 = 3.98 is the Landau half-width, and the position

of the peak shifts further away from the incident energy

7.2.6. HARD-PHOTON BREMSSTRAHLUNG

The radiation effects and corrections considered above

modify the shape and the area of elastic and inelastic electron

scattering peaks down to a cutoff-energy A\E- , usually taken

as n- 1 MeV. The radiation tail that reaches from each peak

all the way down to zero energy of the scattered electrons

has to be calculated also, for the purpose of subtracting the

background that it provides for the inelastic peaks. It again

consists of t -effect and -effect contributions, the latter

from radiation and ionization before and after scattering, the

former from the radiation of hard ( k >AIU F ) photons during

scattering. This effect will be considered here first.

The infinite number of photons emitted in the electron

scattering process consists mainly of very soft photons for

which lowest-order perturbation theory does not apply (Bloch

37). Hard-photon emission however can be treated in first Born

approximation (for nuclei that are sufficiently light), and one
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only needs to integrate the bremsstrahlung cross section over

the directions of the unobserved single photon.

The bremsstrahlung cross section for a static Coulomb

field (including screening, but not nuclear size) without

recoil (Bethe 34, Heitler 54) has been integrated for the case

of a point nucleus by Racah (34) and by McCormick (56), and

the effect of a spherically symmetric nuclear charge distribution

was taken into account by a charge form factor in the work of

Maximon and Isabelle (Maximon 64). To this has been added the
**contribution of a (spherically symmetric) magnetic moment by

Ginsberg and Pratt (Ginsberg 64); see also Motz (64), Goldem-

berg (66).

Schiff (52) has given a simple prescription for approximate-

ly carrying out the angular integration over photons. His

"peaking approximation", frequently used by experimenters, e.g.,

in the results of Peterson (68) shown in Fig. 7.5, is based on

the fact that for high energy electrons, bremsstrahlung is

emitted mainly in a small cone of opening angle )), c / L

around the direction of both incident and scattered electron.

This reduces the cross section to a simple physically meaning-

Nuclear size effects in bremsstrahlung have first been considered

by Hough (48), and by Biel and Burhop (Biel 55).

**Magnetic moment contributions for bremsstrahlung were considered

earlier by Sarkar (60) and by Dowling (64); for its effect on

electron polarizations, see Kerimov (67).
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ful expression (Friedman 59) consisting of a term proportional to

the elastic scattering cross section (lcr/dfSat energy EL

(i.e. scattering before radiation), and a term with d/&LQ
at energy E7-, E- ,k (i.e. scattering after radiation). The

validity of the peaking approximation has been examined by

Maximon (64) and by Mo (69).

The bremsstrahlung cross section for the case that at the

same time the nucleus is left in an excited state, has been

derived by Perez y Jorba (61) using the peaking approximation.

A more general calculation of the radiation tail of excited

states has been performed by Maximon and Isabelle (Maximon 64a),

in which the differential cross section is expressed by the same

nuclear multipole form factors and , Eqs.

(4-16e, f), which also appear in the elastic Born cross section,

Eq. (4-16c). This is a consequence of the fact, mentioned at

the beginning of Section 4.1, that in any type of electrodynamic

nuclear interaction with one-photon exchange, and no observation

of the final nuclear states, the result always depends on the

same two invariant functions (called VVI, VV. in Section 4.1),

no matter what goes on at the other end of the photon line.

The cross section integrated over photon angles is left as an

integral over x at by Maximon and Isabelle.
*

A form of the bremsstrahlung cross section given in terms of

the elastic scattering amplitudes (and going beyond the Born

approximation) has been derived by Parzen (51).
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All the work mentioned above has neglected the recoil

of the nucleus (except through a kinematic factor fr.Sc ),

often (but not always) also neglecting the electron mass HL
*

It is hence superseded by a more general formula given by Tsai

(Tsai 64, Mo 69) and by Nguyen Ngoc and Perez y Jorba (Nguyen
**Ngoc 64, 65), valid for any target spin, arbitrary final

(elastic or inelastic) unobserved nuclear (or nucleon) states,

given in terms of the two general form factors Wi and %/L

all with correct relativistic kinematics. A similarly general
*

After an estimate of kinematic and dynamic recoil effects in the

Bethe-Heitler formula was given by Drell (52), Berg and Lindner

(Berg 58, 61) gave a completely relativistic formula for the

radiation tail from the elastic peak of the proton, but with

special assumptions for the form factors (equality of Dirac and

Pauli form factor).
**

Although photon emission from the nuclear system (the dynamic

recoil effect ) is accounted for in the form factors, it does

lead to interferences with photons emitted by the electron line.

Such interference terms are not taken into account in Tsai's and

Nguyen Ngoc's formula. Further interference terms arise from

photon decay of virtual excited nuclear levels; this effect has

been considered by Hubbard (66) and by Acker (67), and will be

discussed in Chapter 8 of this book.
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result, but making use of the peaking approximation, is given by

Meister and Griffy (Meister 64) and by Henry (66). Nguyen Ngoc's

result was used in a recent calculation of the radiation tails

(Bergstrom 67). But even these general formulas depend on the

assumption of one-photon exchange; a usable calculation that goes

beyond the first Born approximation does not yet appear in the
*

literature , even though such a result is clearly needed for

obtaining radiative corrections that are reliable for more than

just the lightest nuclei.

In the following, we shall sketch the derivation of Tsai's

and Nguyen Ngoc's formula, and give their results.

Eq. (7-6d) gives the bremsstrahlung cross section in the

laboratory system. For a general nuclear current rather than an

external potential A , the expression Eq. (7-6b) may be used

in CA-, with the replacement AL- / k-,k ):

At (a) e (Lim/z-) (2ET4- (At±- P2) P< 'tl'P>n (7-21a)

obtained by comparing Eqs. (7-5a) and (2-60a), and using Eq.

(4-2e). Upon squaring • ( j J ) , one encounters

the expression

te 2Xt6k) (/e)<iac.J)L()(lif^LA } ~~~~~~~~~(7-21b)
(summed over spins and photon polarization), with

A phase shift calculation of bremsstrahlung is now being

performed (Onley 70).
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(c) _(EkAd_ E.k, )~ -,)/ E\~\ ,Y kvy S tA- Y
t- k k, 4klG 2 k, $) 2 Y.'; 2k -1 '(7-21c)

This may be evaluatedby the trace method of Section 2.3.

Furthermore, one also obtains as a factor the tensor w/

of Eqs. (4-3a), (4-3c), expressed by two invariant functions

Wit W which are related to the functions TJ, of Nguyen

Ngoc (64, 65) by

WI - (N A NE /?2C) G(Ai) Y( t - -: _ (7-21d)

WA'= (N"SB P2 M F(A- )(A, + To - T )j
(7-21e)

likewise, W v is related to Nguyen Ngoc's tensor T by

W/UV = (1\IA NiB /.i: )77 at (A0+ .0, - P ), (7-21f)

NAE being his normalization factors. The cross section

may also be written in a general Lor'entz system, where Eq. (4-3d)

applies, and one has

ad5 NX3 Z4,, 2-SkL o o>k

01otL -J (2,)- [(k.P) -meMS J k.P, A t )SMY 7v de})

with (given here only in the laboratory system again, _ °

An expression for s I in a general Lorentz system is

given by Nguyen Ngoc (64, 65).
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2-7

f Tc (T&M2 /m) JA Y(L') {[2E2,(E 2k , 2

+tF (E2tk - 1b](CO5@ - X;- 2-t ( x2 /k E, )(COSs Sk-_ XI)

- (2/1i)(k ~ /L_ ki 2'1)Lr<(kl.kL kt) +k1 .kg (EFTL+kik29

_ (2vn- k± '<2. 2E7,)/ ( k ) 2 ) }

+t (i1r/-n)vA N3 G (A2) %a (Ai ~-'0m7)L(Ejl ,1 -2

- k)+ C y 2 -x2 (co9 x)) (k2kE¾)

( 7-22b)

The axes are chosen as

( 7 -2 2 A )
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For the photon energy, one has

k =L (rML) /( cosI S - At ) 7
(7-22d)

with the four-vector -i- - _ - K_ -K1 = P P , and

=k 4 (A', k)) cfk=)~ (a4~ k plinej S*L plgr,).

Further notation is

7r =A 'i -t /kl, , Wi - An kes /ki ( 4= 1, 2)
(7-22f)

and

Ai =(Cosk -hi + X i
(7-22g)

In the integral of Eq. (7-22a), one may write

k~~~Q k (=-U(It&l COS3k)
(7-22h)

Note that due to the recoil, the photon energy depends on
*

the direction of photon emission, cf. Eq. (7-22d). These

results show that, as stated before, bremsstrahlung may also be

written in terms of the two invariant functions W1 and W2, or

F and G. For practical calculations, it becomes of interest

to express these functions by the multipole matrix elements, or

equivalently, by the form factors :c (I) and XT (k) of

Eqs. (4-16e, f) which enter in the cross section without photon

emission, Eq. (4-16c). One finds neglecting recoil(but without
*-

Neglecting recoil, there is no such dependence since ,'>> l 14*.



neglect of Re ): 

2.~~~~~~~~~~~~~~~~~~~~~~~~~~

NAN,! ( = 2-TNP20 Er()(7-23a) 

XA t\23 F = AT (E?;: /191 )(t/o,; ) 5(b/%) (2) 1 ;(3 ] (7-23b)

This also provides relations between the invariant functions

appearing in the cross section without radiation of Section 4.1

and Section 4.2.

Without nuclear recoil, but taking nuclear excitation into

account ( W# 0), Maximon and Isabelle (Mximon 64a) have derived

the differential bremsstrahlung cross section in terms of

and By (c| ) as a special case of Eqs. (7-22). It is given

in the form

_____ EtS 2 47t 4- 2
~~~~T~~TdQdUl (2w7) k~ kl I fq d (1 ) SL+2 (my ala); (7-24a)

with , as defined in Eqs. (4-16e, f), and

where again

) -a(7-24b)

w =k L- k
(7-24c)

the functions L CL are given by Maximon (Eqs. 16, 17) for

the general case 9Z$ . They contain the characteristic

energy denominators of bremsstrahlung,
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(El- kl cos't , (z -< kL CCSt ) ) (7-24d)

where 4 ( k;, k ,. If only Coulomb scattering is

considered (FT o ) Eq. (7-24a) reproduces the expression

for the inelastic bremsstrahlung cross section obtained by

Perez y Jorba (61).

Setting c _ C , one obtains from Eq. (7-24a) the

expressions given by Ginsberg and Pratt (Ginsberg 64) for the

elastic case:

(kE,-k 2t) (kE2 - k) 2

xik k-L) t k(kx )- 4tik- )I<k (X1
kkF -k ki) (kL 2-k.S

(7-24e)

which is familiar from the Bethe-Heitler formula, and

4ktegL)(k~k () (kL% )(i)4'L (lk

(4 k,- k . _)2 (k (-k k- )E _-_ k

-1- kE~-Kk') h+2 kk2.)7 (k k±V) ~-f(E±2L-wt2 J(kx L (Vsi)
k~_k. k, kEl- k(kE-2 k2)

- (7-24f)

For spherically symmetric charge and magnetic moment distribu-

tions, one obtains using Eqs. (3-3f) and (4-27e):

______ _i __ £ 'k A [4 l CjL.J=O)+ 14 (pj(1 2 T)T( = ]

(7-24g)
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Since in an electron scattering experiment the emitted photon

is not observed, we integrate as before the general cross section

Eq. (7-24a) over photon angles dcl2 . This is best transformed

into an integration over i/k and , and one finds the cross

section in the form of an integral over the form factors

___ __ _ r'>.z +°1o ) ____ [a 
I Q S E i iF(,2)# F" (7-25a)

where

(7-25b)

(7-25c)

and where the functions IL (g) f.|- (;) -are given ex-

plicitly by Maximon (64a). In the elastic case ( C= D ), they

coincide with the corresponding functions cDis)

TL (a do) -- k Rl /F (>- )- (7-25d)

of Ginsberg and Pratt (Ginsberg 64, Goldemberg 66); for spherically

symmetric densities, one has further

iv (7-25e)

For general form factors, the integrals in Eq. (7-25a) must

be evaluated numerically. In the case of elastic scattering

from nuclear point charges, i.e. the spherically symmetric
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case with K A I Hie ,they may be performed analytically

(Racah 34, McCormick 56, Ginsberg 64; see also Motz 64). Numerical

examples will be presented below.

In most experiments of interest, the high-energy limit

EE v -arc,) applies. In this case, the approximation of

Schiff (52), or "peaking approximation", permits the integration

in EqS. (7-25) to be carried out for general form factors. The

basis for this is the observation that the denominators of

Eqs. (7-24d) render the cross section large if the photon is

emitted predominantly along the direction of the incident or

of the scattered electron. Intl-space, the peaks of the corres-

ponding terms (after the integration) are located at

kk 2~ (7-26a)

i.e. at values of that correspond to radiationless elastic

scattering with electron momentum k, (the incident momentum)

or Be, (the scattered momentum). One may take everything except

the denominators, evaluated at these values of A, out of the

integral and then integrate over the denominators exactly. This

leads to (Maximon 64a)

fQlcE2L 21- E&k2/ (7-26b)

the mentioned peak contribution is
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t Cos 1El- E { 2 2EL 1 

~+ C ('±)S u2-tFt -wL )E 2E _ L___

(7-26c)

with, cf. Eq. (4-16c):

't AL (4g2-) 60, [ At (L )Ii O rf) (7-26d)

and -3 is the "background contribution", i.e. the difference

between the exact cross section in the high-energy limit and

the peaking result, also given explicitly by Maximon. In Eq.

(7-26c) , both terms of order Eve(EL/mc ) and of order unity

were kept, neglecting only terms - (ant /'i) and higher.

The background itself is of order unity. The original Schiff

approximation retains only the terms -- 0t (E£/Cn,), which is

not a good approximation except at very high energies; for

= 30-100OMeV, k(E/m-,c)1 L4 -1 only. If it is made

anyway and one neglects the transverse form factors, one finds,

as expressed by the non-radiative Born cross section d,'(E:,)/jQ:

which is valid for E ->> em and for angles not close to zero,

i.e. 's vn,/, . Values of L at or near 1800 are permitted:

1 Y-9 < (but in this case, part of the background must

be retained, so that the peaking approximations itself (]3 =0o)

is not valid near 9' = 8r .
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dfl -1Ei~-2 Lu bT77 J d )

Lo ~Et' 1 aS I
(7-26e)

Nguyen Ngoc (64) however gives

_CX. EL id 2EL EL |El~aGj(cJc7 (p/g2 2L (E- gu- 

t- XS t(E -L X, -d s 1Xb

see also Hand (63a). (7-26f)

*~~~~~~~~~~~~~~~~~

The former expression is due to Perez y Jorba (61), and goes

over into the expression given by Friedman (59) for the elastic

case ( co= O ). Eqs. (7-26e, f) have an immediate physical

meaning: the first term corresponds to the diagram of Fig. 7.8(b)

where the electron is first scattered inelastically by the nucleus

and then emits the photon, and the second to Fig. 7.8(a) where

the photon is emitted first, so that the electron of energy

EL-k = U - - scatters from the nucleus. Eq. (7-26e) was

used frequently by experimenters (Bounin 61, Isabelle 63, Peter-

son 68), who often employed exact elastic cross sections (obtained

The factors s54ln were introduced by Schiff (52) ad hoc

in order to effect the correct infrared cancellation within the

peaking approximation. If background terms are retained as in Eq.

(7-26f), this is no longer necessary (Maximon 64a).
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by DWBA) rather than Born cross sections for go (E/i

An example of an elastic radiation tail calculation

(without magnetic bremsstrahlung) is shown in Fig. 7.12, as

obtained from Eq. (7-25e) for Be with point charge (dashed

curve) and extended charge (solid curves at various values of

F1 and L ); the dots are given by the peaking approximation,

Eq. (7-26f). The tail is plotted vs. (E, /E 1 ) , i.e. as a spec-

trum of scattered electrons. It is seen that it first decreases

from the elastic peak (at U2 - , not shown), but then

rises up again for low values of E2 to form a peak there. This

has first been noted by Keiffer (56), who showed that the peak

is present only for large angles, s'> e /EL, , and originates

from the fact that the coefficient I / in the cross section which

generally is --̂ ( (EL±) , may become large 67 (mY ) for

slow emerging electrons, E) _W at, when also ) | 9

Eq. (7-26e) explains the large low-energy tail by the fact that

in the second term for scattering at low energies EU , the

Coulomb cross section 0U_(E,+cu LUg ) QlCL becomes very

large. The two explanations are essentially identical. The

figure also shows that the radiation tail gets reduced at larger

scattering angles, thus rendering experiments at -3 = 1800 advan-

tageous, as mentioned earlier.

Fig. 7.13 shows elastic radiation tails-for > 1800

at various values of T2. usingplotted vs. T /T and nor-
1. 2 1

mal ized by the f actor 77 1(dj5 coil_) us ing Eq. (2-70a) , f or
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a point nucleus without magnetic moment. It is seen that, as

T2/T decreases from the elastic value 1, the tail adjoins the
*small but non-vanishing elastic peak, goes through a minimum

close to T2/Tl = 1 and then rises monotonously (for T 1l0MeV)

as T 2/T1 decreases further, as was stated earlier.

The radiation tails of inelastic peaks, as seen e.g. in

Fig. 7.5, do not rise for decreasing values of E2, and are gen-

erally smaller than the elastic tail. This is due to the appear-

ance of the inelastic form factors 1 t in Eq. (7-25) which

start out as higher powers of at =0, see below, and

hence negate the effect of the coefficient I-4 which would

be responsible for the l6w-energy rise of the tail.

As to the contribution of a magnetic moment to the elastic

radiation tail, Fig. 7.14 shows the ratio of point-magnetic

to point-charge bremsstrahlung, from Eq. (7-25e) with E d=y

l= 1 , plotted vs.- for E = 54MeV and E /El = 0.4, 0.8
1 1 ~~~~~~~~~~~~~21

and 0.95. The ratio (h/E ) (3t)/3J which was taken out of

d07,' amounts to 0.0366 in the case of Al, e.g. One

sees that the magnetic contribution is large near 4 = 1800 and

at energies close to the elastic peak. Fig. 7.15 presents the

*

The footnote immediately preceding Section 4.4 indicates the

value of Vd (r) , which is finite if We.1 is not neglected,

so that a small elastic Coulomb cross section remains even at

A= 1800.
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charge and magnetic contributions for El = 41.5 MeV electrons,
7.elastically scattered at -9 =1800 from Li with extended charge

-M=~~~~~~~~~~~~~~~~~~~~~~~~~~~-

distribution (assuming - ). The magnetic contribution

appears to provide a better joining of the radiation tail to the

magnetic elastic peak at E2/E1 = 1.

Magnetic bremsstrahlung has been directly observed by Gol-

demberg (Ginsberg 64) in the elastic 1800 scattering of 54 MeV

electrons from hydrogen, as shown in Fig. 7.16. The dashed curve

is the theoretical result for the radiation tail due to a point

magnetic moment, which is in fair agreement with the experimental

data.

Two points might be added to our discussion of the general

bremsstrahlung formula:

(i) If the nuclear continuum states (also known as the

"quasielastic peak") are to be studied by inelastic electron

scattering, the radiative corrections must be modified. The

continuum may be regarded as a summation of many discrete levels,
*

the excitation energy specified by the invariant mass M, cf.

Eqs. (2-9c), (2-10c). It is convenient to integrate over (M )

and to redefine the previous form factors T (Z/ ) and C (A')

by (Tsai 64, Nguyen Ngoc 64, 65, Mo 69)

A (a; ) /I' 1_tL)9 FEel)t L )2

(7-27a)

and similarly for G (/\) . In view of Eq. (7-22d), the con-

tinuum then just requires the replacement
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Tr7 ) -elJ ±<(L, rfr)2 (i4 1 C'9'-9kL- ')'4 k (7-27b)

in Eqs. (7-22a, b), where Lk represents a lower cutoff to the

photon energy, corresponding to the cutoff A for the energy

resolution in the Schwinger correction. The maximum photon energy

ky<&X may be chosen to correspond to the pion threshold of the

final state,

ki<= L S.aQe (MdI'ld m- )j / (I | S - | _t 'Lid t) ) (7-27c)

and depends on the direction is of photon emission.

(ii) For the radiative correction to the elastic proton

peaks, one may introduce the proton form factors. This is

achieved by comparing Eqs. (7-21d, e) with Eq. (4-4f), with the

result

IVAN G 51 h IRS (L )+ -FW 
(7-27d)

(7-27e)

Mo (69) gives extensive discussions for obtaining radiative

corrections to electron-proton scattering; see also Tsai (61),

Bartl (66). Experimentally, Tautfest and Panofsky (Tautfest 57)

have verified the Schwinger correction in electron-proton scat-

tering at 140 MeV, whereas Allton (64) has also checked the

large-angle bremsstrahlung from electrons scattered by protons at
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300-500 MeV. Krass (62) has obtained radiative correction

formulas for electron-proton scattering if the recoiling proton

is observed only.

7'.2'.7. SMALL-ANGLE BREMSSTRAHLUNG

The radiation tail is influenced by the L -effect of small-

angle bremsstrahlung from the electron which takes place before

or after scattering, while the electron passes a nucleus different

from the one which causes the scattering.

The differential radiation probability of electrons of energy

E for emitting a photon in E , E +%'i is given by Rossi

(52) or Segre (53) as

Y (_ ) j (F. ) dV (7-28a)

per unit length (gm/cm ), where XO is the radiation length,

XO 4°l (N/ OS(b/ j. 1'3E

N = Avogadro's number, and

v= /E.
(7-28c)

The function F (E, V) depends on the screening parameter

(100 c/E )Ev/(L-v)j i/3
(7-28d)

and has the expressions:

0 (complete screening),

7F( E- V ) = S va @ 72t(-)9 (7-28e)
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4 < 2, PW'u, ;2 ) &-a a)Lt ,f od)- t /. 

2Sy 1 J.< F (F.;) '-9'J ('' )|~, (et i-E _) , )j, (7-28f)

WLC.

(7-28g)

y 3.1.S (no screening),

Y (E, a!) _ v)= ()-)[X~l ( ' V )- I i. (7-28h)
Here

(v ) -I (- )-(2/3 (-'V!),
(7-28i)

and the functions J , F (() are tabulated, cf. also

Butcher (60). Nguyen Ngoc (65) has given the analytic approxima-

tions -2 )= (. -3* 'A (7-28j)
< (g)= 0 (o&l + o. f 

(7-28k)

7.2.8. COLLISION LOSS

The probability that an electron of energy E loses the

amount of energy E in a collision with an atomic electron,

thereby ionizing the atom, is given by the formula of Mpller (32):

(FT 0 ) I. j (7-29)
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with the coefficient originating from Eq. (7-13d). The cor-
2Z

responding limiting value d E may be compared to that of

the Landau theory, Eqs. (7-14a), (7-15e, g), which is )

for large values of A . This fact, and the dependence of the

folded line shape I (A, T) , Eq. (7-19b), on E through

A Al (S - ) /c , suggests that the energies E be defined

with respect to the elastic peak since C0 , the most prob-

able energy loss.

7.2.9. CALCULATtON OF THE RADIATION TAIL

In order to obtain the complete radiation tail, it is only

necessary to add the i-contributions { and !C to

the t -contribution of Eq. (7-22a), which we shall designate

as (.;c /.'1. 1 o/Ew )Z The -contributions can be written

as (Nguyen Ngoc 65)

(a.d7jWE )~ =i 2 L'$ra- ( k ) + S(l (Ej k )jj d J(¶21

-t I r E k f,, k, J-ot) (7)v

where as in the peaking approximation, the non-radiative scat-

tering cross section Jal (E-, Fl)/1Q enters. The first term

corresponds to an energy loss before scattering, the second

term to the loss k after scattering. The derivation assumes

the scattering to happen at the position ½ t , i.e. in the

middle of the target, but Bergstrom (67) has shown that the

correct folding procedure leads to the same expression, Eq.
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(7-30a), to a very good approximation for target thicknesses

small compared to one radiation length.

The total radiation tail is then given by

A"2j4Lat L / (7-30b)

where we have added the radiative correction obtained from a dif-

ferentiation of Eq. (7-lla) with respect to ZF . The t -term

comes from Eq. (7-22a), or else is approximated by Eqs. (7-25a) or

(7-25e), or more roughly by Eqs. (7-26e) or (7-26f). Using Eq.

(7-22a), Bergstrom (67) has been able to match Eq. (7-30b) to

the line shape formula Eq. (7-19c) for C within 0.5 to 2.0 MeV

from the elastic peak with an accuracy of some per cent. (This

satisfies the needed criterion that the procedure should be in-

sensitive to the value of aE ).

The above refers to the elastic radiation tail. The inelas-

tic tails can be calculated analogously, with e.g. the Schwinger

correction taken from Eq. (7-8d).

7.2.10. THE UNFOLDING PROCEDURE

As can be seen from Figs. 7.4, 7.5 and 7.6, the measured

spectrum of scattered electrons really represents a continuum

consisting of the radiation tails from the elastic and inelastic

peaks, and at sufficiently high excitation also of the continuum

of nuclear levels with their own radiation tails. For describing

this situation, one finally has, using Eqs. (7-19c) and (7-30b),

for the observed spectrum:
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I. A / old A t / _ A
tdC2i~k/¢b7 kc9f24FT /D z l2 e E '2 /½,L (7-31a)

for each level. The continuum however, which cannot be resolved

into levels, must be divided into bins of width AE_ , and

the lower-lying levels may be regarded as bins themselves.

Since the line shape expression (`6/df -iE, jL. is so far

available for the elastic peak only, cf. Eq. (7-19c), we use the

integrated cross sections, i.e. the approximation

of Eq. (7-16) which holds for both elastic and inelastic peaks

(bins), and write for the observed cross section integrated

over the nth bin:

r I (GXJ y ofi \o) +r1 r ) 
,) taQr LLo~ 2 dd bLeveL O (Q iE L(7-3lb)

where the interval AEW ' is situated at the mnth bin.

Inspection shows that this represents an integral equation since

the tail contributions given by Eq. (7-30b) contain the calcula-

ted cross section din (g7 > EL )/fL which we wish to extract

from Eq. (7-31b), both in (cnI:/u.52 and in all bins -Yyr 1 YL

i.e. at a lower incident energy. If the complete expression

Eq. (7-22a), or Eqs. (7-25a) of (7-25e) are used rather than the

peaking approximation, it is the form factors rather than the

cross sections that enter in this way. It is clear that finally

to arrive at the "calculated" Co/dT 2 represents a formidable

program of unfolding, if it is to be done with sufficient accuracy.
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These problems have been discussed by Tsai (64), Isabelle

(66a), Crannell (69) and Mo (69), and actual unfolding procedures

of experimental data were carried through by Nguyen Ngoc (64),

Kendall (64), and Crannell, (66). In principle, what must be

done is as follows (Crannell 69): Schwinger corrections are

first applied to the elastic peak (first bin). The cross section

of the second bin is reduced by the amount that comes from elec-

trons that would have been at higher energies had there been no

radiative degradation of their energy, and is then subjected to

its own Schwinger correction to correct for the electrons that

were removed from it. A similar procedure is applied to the

third bin, and so on. This iterative procedure can be pro-

grammed in a computer.

If one wants to use analytic procedures, one should know

all the form factors of the lower-lying levels. This means that

the spectra must be measured for a series of different incident

energies EI at a given scattering angle (Nguyen Ngoc 64,

Kendall 64); the values of the form factors at energies in be-

tween may be found by interpolation. First, one Schwinger-

corrects the elastic peak and obtains elastic form factors for

a sufficient range of Ak . One then calculates the radiation

tail of the elastic peak (first bin) and subtracts it from the

spectrum. What remains of the first excited peak (second level)

is Schwinger-corrected, and the form factors determined; then

the radiation tail of the second bin is calculated. This pro-
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*

cedure is then repeated for the following bins. Since this

becomes lengthy for the continuum, an alternate procedure

there would consist in assuming a certain shape for the form

factors in each bin, calculating its radiative corrections and

tail and trying to fit the sum of all this to the observed

spectrum.

Finally, it should be kept in mind that first Born approxi-

mation forms the basis of most of the corrections discussed in

the preceding. For heavy nuclei / 20-30, exact radiative

correction formulas are needed, but are not yet available. If

they were, they would probably be so complicated that the above-

described unfolding procedure might become well-nigh unmanageable.

7.2.11. RADIATIVE CORRECTIONS FOR MUONS

Intense beams of muons will soon be available at the

"meson factories" now under construction. It is often stated

that because of their higher mass, radiative corrections to the

scattering of muons will be much less than those for electrons,

so that the latter may be replaced with advantage by muons as

scattering probes of nuclear structure. To clarify this point,

Maximon and Tzara (Maximon 68) have compared the ratio

between the area of an inelastic peak (at the excitation energy

(CL) ), of width AEU , and the area of the underlying radiation

tail in a bin of equal width, as calculated for muon and for

The triangles in Fig. 7.5 represent an example of a corres-

ponding unfolded spectrum.
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electron scattering. Assuming Cx4'z k' , thus

,c ' k ,they find

T C.) C VS~ ,>/(' 

2 'L 2
2- I + - _ )

X ('m L+ 1 o g )1/; z L L L r Or, 5 ~r ' ''2- (7-32)

where C, is the Schwinger correction of

Eq. (7-8d), and l(/)K,()is the function of Eq. (7-26d)

containing the form factors of the inelastic level, and of the

elastic level providing the radiation tail. The ratio pt, / ) v

approximately obtained by using the denominators of Eq. (7-32)

only, is plotted in Fig. 7.17, from which it is seen that

solely for small momentum transfers X 200 MeV (which

are only moderately useful for probing nuclear structure) is it

possible to obtain a relative reduction of the radiation tail by

a factor j 10 when replacing electrons by muons. The

planning of muon scattering experiments thus calls for some

scrutiny, given that the beam intensities will be smaller than

for electrons.



57

ACKNOWLEDGMENTS

The interest and support of Dr. T. Godlove, Head,

Linac Branch, NRL, in the preparation of this report is

acknowledged. I am indebted to Professor Hall L. Crannell

and Dr. J. Bergstrom, both of Catholic University, for

discussions and information.



58

APPENDIX

A. LIST OF SYMBOLS

E'< (FCg )

LE (k.)

E L- I tL,

-4, A,, - k 2

, = -S.,

initial (final) total electron energy

initial (final) electron momentum

scattering angle of electron

energy transfer

momentum transfer

excitation energy of nuclear level
electron mass

proton mass

mass of nucleus

electron charge

B. SUPPLEMENTARY EQUATIONS

Eq. (2-9c)

Eq. (2-10c)

(Eq. 2-12c)

E ~~~~ 

E: _ M " 

T= /\/21M
-I

'= (-2 b /IM ) saL '. [I + (2 /M )HstadtLe (57

Hofstadter (57)

j
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Eq. (2-13b)

Eq. (2-20c)

Eq. (2-25b)

$rec = L i t (2 L1 /ri ) L 1 - ..

' =
-dt

Eq. (2-33c)

Eq. (2-33d) .- IL yj ) )~. 

{ I t b -(2r)Eq. (2-60a)

2

Eq. (2-70a) (I -/ L t- 0)

2E 1 Z. Is 't'I

Eq. (2-70d)

Eq. (3-3f)

dsf =

K-Z,- IL

(k 2 rn e

( O -L ' i.( Z I
4 1

SinL 4 'g,

(LM )'~-jj~ L (2Ltl)!' J~ L~1 (TT L0f~l y)fr) L ) (Yk (") lI "-

(S - (ZT I- ' ')

Eq. (3-37b)

1
Eq. (3 -37c, d) AL

II
Tlberall (69)

(P p) =-It ('p' ) Er fA CA (E (

Yennie (57)

C(A1)--' )4

I
1~ KYA11\

- I

+ /-~ -1 cc T, I y

Rose (61)

�f A K �- - ��- r,\ = I Y-,\ ,

j 5- � (2-,, E.L/ �,) J (El_ - EL - E�)

P -T =- [ 0�, (P - C, A )



Eq. (4-2d)

Eq. (4-2e) I 1 c, (2 -,) I, ~ " k -t

Eq. (4-3a) \A/\/ -1-L I 2 yr\ (A
J.t_ ,v c) :t'\, f

Eq. (4-3c)

Drell (64)

Drell (64)\A/ /,, K/ (W / & h?) (K.,\ -I > /A.;/N )

Drell (64)

Eq. (4-3d) ki /C, -) L ( ?4 , )"

Eq. (4-4f) F V/:- (At //LiH ) 

- -, IE W- / (F. Li, )

I Tk (- ) I t

t ' ('- /2m) IYTeni (7 a3) 'I

y t) ( T,, -'Pi, -vE' )

Yennie (57 a)

Eq. (4-16c) tL ( 7I I) ( ./.~ I ) I- ,4 L -K.Q. q ) T h-z( i

co's _S G 
'2

Co'h. 
2~1 "

Eq. (4-16e)
1-F .

% N (L =):
Maximon (64a)

I\L
L- o~ I-AL ( ,)l

Eq. (4-16f) F.ri ( i ) - - L2 Z [ I ' L
t ~~~L= I |

Maximon (64a)

6o

t-zT LA ( K 1 )

(1-11 / LY ) < _P / j�, (, 1) 1 T" >
V

2-
j 

_� , r, - L " -� � �., //,�
-1 'I"; (�s , , A �-,, ) ( , " /� , �� I' /�J/m

'L 7-'., ) I � ) ( T' , , - _P , , L )

\,\/ 2::7 (M _'/ 71,J [ 1 F, (:�,, ) I �-

C� 'L

L4 k, I

d�-
dfl

(.1):



Eq. (4-27e) i L/(L i 1 )] . (L{ )/L -i L

<j L - -(_7 LCQI-j-) ) ) (Lti)'Jr

- L '' ,f.- )L+l (;r)/aLLUI (.Vr-) J /

Uberall (69)
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Fig. 7.12

Fig. 7.13

Spectrum of 42.6 MeV electrons inelastically
scattered from 12C at i9 - 1600 (left-hand

scale). Right-hand scale: elastic peak. Continu-
ous curve: radiation tail. Barber, PRL 3,219(1959)
Spectrum of elastically and inelastically scattered
electrons from 8 9Y, for E1 = 70 MeV and l =1300

(Peterson 68), showing elastic and inelasti radia-
tion tails.
Spectrum of 70 MeV electrons scattered at 9 =1809
from a water target. Points indicate uncorrected
data, triangles the data after radiative corrections
were applied (Goldemberg 66).
Lowest-order and radiative correction diagrams
for electron-nucleus scattering.
Diagrams for photon emission during electron-
nucleus scattering.
Transmission Geometry.
Contour for Laplace inversion of Eq. (7-18g)
Cross section correction (line shape) due to
Schwinger and straggling corrections for 208Pb,
E1 = 400 MeV, tS 9 0o, A - 30 mg/cm 2 . Curves

include successively Landau, Landau plus radiation
straggling, and both stragglings plus Schwinger
correction (Bergstrom 67).
Radiation tail from elastic scattering of elec-
trons E1 = 150, 200 MeV ( 0 a 600, 135 0) from
9Be; extended charge (solid curves) and point
charge (dashed curve at 200 MeV, 600). Dots:
peaking approximation (Nguyen Ngoc 64).
Radiation tail from 0 c 1800 elastic scattering
from a spinless point nucleus at various values
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of T1T E1 - (Motz 64).

Ratio of magnetic to coulomb radiation tail,
multiplied with (B/K lI/(Tr Y\ for

E1 54 MeV, plotted vs. a at E2 /E1 = 0.4,

0.8 and 0.95 (Ginsberg 64).

Radiation tail of 180 elastic scattering from
7Li, showing charge and magnetic contributions
(Ginsberg 64).
Magnetic bremsstrahlung contribution adjoining
the elastic peak of 54 MeV electrons scattered
at a - 1800 from hydrogen, as observed by

Goldemberg (Ginsberg 64).

Ratio of inelastic level areas relative to radi-
ative tails for muon and electron scattering as
a function of momentum transfer (Maximon 68).
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Fig. 7.4 - Spectrum of 42.6 MeV elec-
trons inelastically scattered from C
at t = 160° (left-hand scale). Right-
hand scale: elastic peak. Continuous
c u r v e: radiation t a i 1. Barber, PRL
3,219(1959)
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Fig. 7.5 - S p e c t r u m of elastically and
inelastically scattered electrons from
89 y, for E, = 70 MeV andt9=130 0

(Peterson 68), showing elastic and inelas-
tic radiation tails
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Fig. 7.6 - Spectrum of 70 MeV
I electrons scattered at 0 =180°

from a water target. Points
ELASTIC indicate uncorrected data, tri-
PEAK angles the data after radiative

corrections were applied
(Goldemberg 66).
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Fig. 7.7 - Lowest-order andradiative
correction d i a g r a m s for electron-
nucleus scattering
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Fig, 7.8 - Diagrams for photon
emission during electron-
nucleus scattering.

Fig. 7.9 - Transmission
Geometry.
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Fig. 7.10 - Contour for
Laplace inver sion of Eq.
(7- 18 g)
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399.850

Fig. 7.11 - Cross section correction(line
shape) due to Schwinger and straggling
corrections for 208 Pb, E1 = 400 MeV, 0
90°, d = 30 mg/cm 2 . Curves include suc-
cessively Landau, Landau plus radiation
straggling, and both stragglings plus
Schwinger correction (Bergstrom 67).
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Fig. 7.12 - Radiation tail from elastic
scattering of electrons El = 150, 200
MeV (O= 60 , 135 0) from 9 Be;extended
charge (solid curves) and point charge
(dashed curve at 200 MeV, 600). Dots:
peaking approximation (Nguyen
Ngoc 64).

Fig. 7.13 - Radiationtail from 0 =
1800 e l a s t i c scattering from a
spinless point nucleus at various
values of T1 = E1 - me (Motz 64).

74

bT'N

I-r



2
10 

SCATTERING ANGLE

0.6
E2/EIl

Fig. 7.14 - Ratio of magnetic to
Coulomb radiation t a i 1, multiplied
with (Z/A)2 [3J/(J+1)1 for E1 = 54
MeV, plotted vs. 0 at E2 /E1 = 0.4,
0.8 and 0.95 (Ginsberg 64).

Fig. 7.15 - Radiation tail of
1800 elastic scattering
from 7 Li, showing charge and
magnetic contributions (Gins-
berg 64).
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Fig. 7.16- Magnetic bremsstrahlung
contribution a d j o in in g the elastic
peak of 54 MeV electrons scattered
at 0 = 1800 from hydrogen, as ob-
served by Goldemberg (Ginsberg 64).
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Fig. 7.17 - Ratio of inelastic
level areas relative to radia-
tive tails for muon and electron
scattering as a function of
momentum transfer (Maximon
68).
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